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From the calculations, one can see that below the dotted line at which
. ¢ = 1.0 in./hr, the rainfall infiltrates into the ground and the rainfall

above this line (a total of 4.9 in. in 12 hours) runs off.
0

Theoretical Infiltration Methods*

Theoretical approaches include the solution of the governing equation of
continuity and Darcy’s law (Chapter 8) in an unsaturated porous media.
The governing equation, presented in more detail in Appendix D.2, takes

the form | {
o__9 3W(9) oK@ T combne stlemenY
o oz k® T o, 0 MRS A mome~tom (1.23)
(oM SN0
where

0 = volumetric moisture content (0/0),

z = distance below the surface (cm),
w(6) = capillary suction (pressure) (cm of water),
To K(0) = unsaturated hydraulic conductivity (cm/s).

nto Hydraulic conductivity K(6) relates velocity and hydraulic gradient in

Darcy’s law. Moisture content 0 is defined as the ratio of the volume of
water to the total volume of a unit of porous media. For saturated
ground water flow, € equals the porosity of the sample n, defined as
the ratio of volume of voids to total volume of sample; for unsaturated
flow above a water table, 8 < n. The water table defines the boundary

0 ac, between the unsaturated and saturated zones and is defined by the

1al to | surface on which the fluid pressure P is exactly atmospheric, or P = 0.

atisfy Hence, the total hydraulic head ¢ = y + z, where y = P/pg, the pres-
sure head.

The value of  is greater than zero in the saturated zone below the
=49. .

- water table and equals zero at the water table. It follows that y is less than
yd, no- zero in the unsaturated zone, reflecting the fact that water is held in soil
pores under surface-tension forces. Soil physicists refer to i < 0 as the
tension head or capillary suction head, which can be measured by an
instrument called a tensiometer.

To further complicate the analysis of unsaturated flow, the m01sture
content @ and the hydraulic conductivity K are functions of the capillary
suction y. Also, it has been observed experimentally that the 8- relation-
(1.1 — ships differ significantly for different types of soil. Figure 1.16 summarizes

unsaturated zone parameters and relationships. .
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* This section may be omitted without loss of continuity in text material.
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Typical -y relationships in the unsaturated zone.
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Equation (1.23) is called Richards (1931) equation and is a very
difficult partial differential equation. Both numerical and analytical solu-
tions exist for certain special cases. The most difficult part of the proce-
dure is determining the characteristic curves for a soil, which relate unsat-
urated hydraulic conductivity K and moisture content 6 to capillary
suction . The characteristic curves reduce to the fundamental hydraulic
parameters K and 7 in the saturated zone and remain as functional rela-
tionships in the unsaturated zone.

Philip (1957) solved Eq. (1.23) analytically for the condition of excess
water at the surface and given characteristic curves. His coefficients can be
predicted in advance from soil properties and do not have to be fitted to
field data. However, the more difficult case where the rainfall rate is less
than the infiltration capacity cannot be handled by Philip’s equation.

One of the most interesting and useful approaches to solving the
governing equation was originally advanced by Green and Ampt (1911). "
In this method, water is assumed to move into dry soil as a sharp wettin
front. At the location of the front, the average capillary suction hea
¥ = Y, is used to represent the characteristic curve. The moisture content
profile at the moment of surface saturation is shown in Fig. 1.17(a). The
area above the moisture profile is the amount of infiltration up to surface
saturation F and is represented by the shaded area of depth L in Fig.
1.17(a). Thus, F= (0, — ;)L = M,L, where 6, is the initial moisture
content, 6, is the saturated moisture content, and M, = 6, — 0, the initial
moisture deficit.

Darcy’s law (Chapter 8) is then used with the unsaturated value for X
and can be written

oh
g =—K(6) > _ (1.24)

where
g = Darcy velocity (depth/time),
z = depth below surface (depth),
h = potential or head = z + y (depth),
¥ = tension or suction (negative depth),
K(6) = unsaturated hydraulic conductivity (depth/time),
6 = volumetric moisture content.

Equation (1.24) is then applied as an approximation to the saturated
conditions between the soil surface (subscript “surf””) and the wetting
front (subscript “wf™), as indicated in Fig. 1.17(b),

q=—f= =KMot = Mot)/(Zourt = Zos)s (1.25)

in which it is assumed that the Darcy velocity (positive upward) at the soil
surface equals the downward infiltration rate, —f, and the saturated hy-
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FIGURE 1.17

Moisture and infiltration relations. (a) Moisture profile at moment of
surface saturation. (b) Moisture profile at later time. (c) Infiltration be-
havior under rainfall. (Adapted from Mein and Larson, 1973.)

draulic conductivity, K;, is used to represent conditions between the
surface and the wetting front. The depth to the wetting front is L. Thus,
with the coordinate z positive upward, z,,; = — L. Using the average ten-
sion at the wetting front, y,, we have :_
he=z+wy=~—L+y, “(1.26)

L]

i Noting that 4 = 0 at the surface, Eq. (1:25) becomes
—f=—K,[0— (=L +y))/[0— (—L)]

f=K(1 —y/L). (1.27)
: The volume of infiltration down to the depth L is given by
; F=L6,—0)=LM,. (1.28)
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Substituting for L in Eq (1.27) gives the original form of the Green-Ampt

equation,
f=K,[1—(6,—6)y,/F]’

Remembering that yis negative, Eq. (1.29) indicates that the infiltration *
rate is a value greater than the saturated hydraulic conductjvity—aslong #
as there is sufficient water at the surface for infiltration, as sketched in
curves Cand D of Fig. 1.17(c). Functionally, the infiltration rate decreases *
as the cumulative infiltration increases.

As mentioned in the discussion of the Horton equation, the rainfall ¢
intensity, i, is often less than the potential infiltration rate given by Eq.
(1.29), in which case f= i. Mein and Larson (1973) show how Eq. (1.29)
can be used to develop the total infiltration curve. At the moment of
surface saturation, = i. Let the corresponding volume of infiltration be
F,. With f= i, Eq. (1.29) can then be solved for F,, the volume of infiltra:"
tion at the time of surface saturation (¢,, the time at which Eq. 1.29
becomes valid), :

Fy =10, — 0w /1 — i/K,]= May,/(1 — i/K,). (1.30)

We require i > K in Eq. (1.30) and remember that ¥, is negativé. The
Green-Ampt infiltration prediction is thus the following;

L. If i = K, then f=i (curve A in Fig. 1.17¢)
2. If i > K, then f=j until F= i {,= F, (Eq. 1.30)
3. Following surface saturation,

f=K,[1 — Muy,/F] (Eq. 1.29) for i > K, and f=i for i < K.

The combined process is sketched in curves B~ C of Fig. 1.17(c). As long
as the rainfall intensity is greater than the saturated hydraulic conductiv-
ity, the infiltration rate asymptotically approaches K, as a limiting lower
value. Mein and Larson (1973) found excellent agreement between this
Green-Ampt method, numerical solutions of Richards’s equation, and
experimental soils data. If the rainfall rate starts above, drops below, and .
then again rises above K during the infiltration computations, the use of .
6) Green-Ampt becomes more complicated, making it necessary to tedis-
tribute the moisture in the soil column Tather than maintaining the as-
sumption of saturation from the surface down to the wetting front shown
in Fig. 1.17(b). The use of Green-Ampt procedures for unsteady rainfall
7 . sequences is illustrated by Skaggs and Khaleel (1982).

B Equation (1.29) predicts infiltration rate, £, as a function of cumula-
tive infiltration, F, not time. Because /= dF/dt, the equation can be
29) converted into a differential equation, the solution of which can be solved

ae
18,
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iteratively for F(f) (Chow et al., 1988). Then Eq, (1.29) can be used to
-determine £(¢).

A major advantage of the Green-Ampt model is that,in principle; the
necessary parameters, K5y, and M, = 6; — 6;; can be determined from
physical measurements in ‘the soil, “rather than empirically as for the
Horton parameters. For example, saturated hydraulic conductivity (often
loosely called permeability) is tabulated by the U.S. Soil Conservation
Service (SCS) for a large number of soils as part of that agency’s Soil
Properties and Interpretation sheets (available from local SCS offices). An
increasing quantity of tension vs. moisture content data (of the type
shown in Fig. 1.16) are also available, from which a value of ¥rcan be
obtained by integration over the moisture content of interest. For exam-
ple, several volumes of such information have been assembled for Florida

soils (e.g., Carlisle et al., 1981). In practice, the Green-Ampt parameters

are often calibrated, especially when used in continuous simulation
models.
A useful source of information on Green-Ampt parameters is pro-
vided by Rawls et al. (1983), who present data for a large selection of soils
from across the U.S. These data are shown in Table 1.4. Two porosity (6,)
values are given: total and effective. Effective porosity accounts for
trapped air and is the more reasonable value to use in computations, It can
be seen in Table 1.4 that as the soil particles get finer, from sands to clays, ;
the saturated hydraulic conductivity, K, decreases, the average wetting “

front suction, ¥y, increases (negatively), and porosity, 6, is variable. Table

1.4 provides valuable estimates for Green-Ampt parameters, but local
data (e.g., Carlisle et al., 198 1) are preferable if available. Missing is the
initial moisture content, 6;, since it depends on antecedent rainfall and
moisture conditions. Typical values for Af 4= 0, — 6,are given in the SCS
Soil Properties and Interpretation sheets and are usually termed “avail-
able water (or moisture) capacity, in./in.” Values usually range from 0.03
to 0.30. The value to use for a particular soil in question must be deter-
mined from a soil test, Otherwise, a conservative (low) M, value could be
used for design purposes (e.g., 0.10). !
In areas of high water tables, there is a limit to the soil storage capacity :
and infiltration cannot continue indefinitely without complete saturation
of the soil. In such cases, infiltration ceases, losses (rainfall abstractions)
become zero, and rainfall excess intensity equals rainfall intensity. If i
site-specific information is available, this capacity, S, can be estimated

from soil moisture data and depth to water table, L, as implied in Fig.
1.17(b),

S=1(,—0) (1.31)

where L is now the depth to the water table. In some localities, regional

information on available soil storage has been prepared (e.g., South Flor-
ida Water Management District, 1987).

i e

Source: Rawls, Brakensiek, and Miller, 1983.

d deviati amcter value given.
‘The numbers in parentheses below each parameter arc one standard deviation around the par g

r_
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EXAMPLE 1.8a .

GREEN AND AMPT INFILTRATION EQUATION

For the following soil properties, develop a plot of infiltration rate fvs.
infiltration volume F using the Green and Ampt equation:

K,=1.97 in./hr,

0,=0.518,
6,=0.318,
wy—9.37 in,,
i =7.88 in./hr.
SOLUTION

Noting that M, = 6, — 6;, we can solve Eq. (1.30) to obtain the volume of
water that will infiltrate before surface saturation is reached:

F.= ¢Q]V1&
T iKY
_ —(9.37in.)(0.518 — 0.318)
~ 1 —[(7.88 in./hr)/(1.97 in./hr)]
[F,=0.625 in.]

Until 0.625 in. has infiltrated, the rate of infiltration is equal to the rainfall
rate. After that point (surface saturation) the rate of infiltration isgiven by
the equation (Eq. 1.29) »

f=K,(1 — Muy,/F)

Solving this equation for various values of F gives the graph shown in Fig.
E1.8a, where fdecreases as I increases.

-

f {in./hr)
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FIGURE E1.8(a)
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1.6 STREAMFLOW

EXAMPLE 1.8b

\

GREEN-AMPT TIME TO SURFACE SATURATION

Guelph loam has the following soil properties (Mein and Larson, 1973)
for use in the Green-Ampt equation:

K;=3.67 X 1074 cm/sec
6,=0.523
Yr=—31.4 cm water

For an initial moisture content of 6; = 0.3, compute the time to surface
saturation for the following storm rainfall:

i = 6K, for 10 min
i = 3K, thereafter.
SOLUTION

The initial moisture deficit, M;=0.523 —0.300 = 0.223. For the first
rainfall segment, we compute the volume of infiltration required to pro-
duce saturation from Eq. (1.30):

Fo=yM,/(1 —i/K,)=(—31.4 cm)(0.223)/(1 ~ 6K,/K,) = 1.40 cm.
The rainfall volume during the first 10 minutes is
10/ = (10 min)(6 X 3.67 X 10~* cm/sec)(60 sec/min) = 1.31 cm.

Since 1.31 < 1.40, all rainfall infiltrates and surface saturation is not
reached, and F(10 min) = 1.31 cm.

The volume required for surface saturation during the lower rainfall
rate of i = 3K is

F,=(—31.4 cm)(0.223)/(1 — 3K,/K,) = 3.50 cm.

Thus, an incremental volume of AF= F,— F(10 min) = 3.50 —
1.31 = 2.19 cm must be supplied before surface saturation occurs. This
requires an incremental time of :

At=AF/i=(2.19 cm)/(3 X 3.67 X 10~* cm/sec) = 1989 sec
= 33.15 min.

Thus, the total time to surface saturation is 10 + 33.15=43.15 min.

STREAMFLOW

When rainfall strikes the land surface, it may initially distribute to fill
depression storage, infiltrate to fill soil moisture and ground water, or -
travel as interflow to a receiving stream. Depression storage capacity is




